十余年前,3D打印風(fēng)頭正盛。2012年,美國《時(shí)代周刊》將3D打印產(chǎn)業(yè)列為“美國10大增長最快的工業(yè)”。同一年,中國3D打印技術(shù)產(chǎn)業(yè)聯(lián)盟正式成立,多地建設(shè)3D打印產(chǎn)業(yè)園區(qū)。2013年,德國提出工業(yè)4.0發(fā)展戰(zhàn)略,旨在提升制造業(yè)的智能化水平,而3D打印是4.0戰(zhàn)略中的關(guān)鍵一環(huán)。淡出公眾視線之后,3D打印并沒有停止發(fā)展的腳步。
2019年,通用航空研發(fā)出世界上第一臺(tái)采用3D打印組件的渦輪螺旋槳發(fā)動(dòng)機(jī)。2022年,生物3D打印機(jī)制造出了心肌組織與毛細(xì)血管。2023年,Meta(原Facebook)宣布開發(fā)一款配備最新版OpenAI人工智能的3D打印機(jī)器人。
本月,中國的研究團(tuán)隊(duì),通過干細(xì)胞分離、工廠化培養(yǎng)與組織化構(gòu)建技術(shù),用細(xì)胞培養(yǎng)出大黃魚組織仿真魚排。
3D打印過去數(shù)十年經(jīng)歷了怎樣的發(fā)展?如今在哪些領(lǐng)域落地?未來又會(huì)有怎樣的發(fā)展?在本篇報(bào)告,我們將聚焦3D打印,探討以下問題:
3D打印如何與最新的AIGC技術(shù)相結(jié)合?
為什么3D打印最先在航空航天和牙科落地?
生物技術(shù)和3D打印相結(jié)合,會(huì)碰撞出什么樣的火花?
為什么說混合加工是3D打印的未來?
3D打印有哪些優(yōu)勢(shì)和劣勢(shì)?
我們可以把3D打印理解為“聚沙成塔”。3D打印又稱為增材制造,是一種以數(shù)字模型文件為基礎(chǔ),運(yùn)用粉末狀金屬、塑料等其他材料逐層鋪設(shè)打印,最后形成三維物體的制造方法。
無論是零維的點(diǎn),一維的線,二維的面,最終都能聚合形成三維的實(shí)體。
就像在日常生活中,小孩子會(huì)用沙堆城堡,用積木搭建出想要的形狀。我們可以把沙子理解成零維的點(diǎn),被不斷累加、堆疊之后,沙子就變成了三維的狀態(tài)。
3D打印的起點(diǎn)是數(shù)字化的模型,終點(diǎn)是現(xiàn)實(shí)的物理實(shí)體。因此,3D打印相當(dāng)于幾何模型到真實(shí)物體的現(xiàn)實(shí)映射。3D打印和當(dāng)下熱門的大模型非常適配。人們可以通過大模型輸出設(shè)計(jì)模型,再由3D打印機(jī)把物品制造出來。
如果說AIGC與大模型是給AI配上了一支畫筆,3D打印技術(shù)則是給AI配上了在現(xiàn)實(shí)中憑空制造物體的手。2022年12月,OpenAI曾發(fā)布Point-E模型,只需幾秒鐘即可根據(jù)文本生成3D資產(chǎn)。2023年5月,OpenAI再次發(fā)布了升級(jí)模型Shap-E,能夠生成更高質(zhì)量的模型。通過3D打印技術(shù),這類由AI快速制作的3D資產(chǎn),就能自動(dòng)轉(zhuǎn)化為物理世界中的真實(shí)模型。
OpenAI發(fā)布的升級(jí)模型Shap-E生成的3D資產(chǎn)。圖片來源:github
而Meta(原Facebook)也于2023年宣布開發(fā)一款配備最新版OpenAI人工智能的3D打印機(jī)器人。
關(guān)于3D打印的話題,近年來的討論已經(jīng)逐漸從過去30年的制造與材料科學(xué)的視角,轉(zhuǎn)向了全新的領(lǐng)域。人工智能在3D打印領(lǐng)域的飛速應(yīng)用,挑戰(zhàn)了傳統(tǒng)的3D模型制作方式。傳統(tǒng)的制作方式,大多依賴設(shè)計(jì)師與工程師的專業(yè)能力。
借助于AIGC以及AI 3D掃描重建應(yīng)用,即使是初級(jí)用戶,也能輕松地創(chuàng)建大量屬于自己的3D模型資產(chǎn)。而ChatGPT這類具備邏輯能力的大語言模型快速崛起,讓我們看到了通過簡單語言交互即可實(shí)現(xiàn)3D打印工作的可能性。甚至在傳統(tǒng)復(fù)雜的3D打印工藝編程上,大語言模型也展現(xiàn)出巨大潛力。未來,這類大語言模型能成為用戶3D打印時(shí)靠譜的“老師傅”。
人工智能與3D打印,讓人們打開了對(duì)未來的想象空間。然而,相比于借助其他領(lǐng)域的新技術(shù),3D打印當(dāng)前面臨的核心工藝問題,比如力學(xué)性能有限以及表面精度不足,仍需由3D打印技術(shù)自身來解決。
這些挑戰(zhàn)意味著新的技術(shù)創(chuàng)新機(jī)會(huì)。無論是從創(chuàng)業(yè),還是投資的角度,抓住能解決當(dāng)下3D打印工藝與應(yīng)用局限的新技術(shù),或許就擁有了成功的入場(chǎng)券。
現(xiàn)代3D打印技術(shù)從何而來?
圖片來源: scitechdaily
日本名古屋市工業(yè)研究所的久田秀夫(Hideo Kodama)發(fā)明了利用大桶光敏聚合物成型的三維模型增材制造方法。
1980年5月,久田秀夫申請(qǐng)了與該技術(shù)有關(guān)的第一項(xiàng)專利。
1983年,美國人Chuck Hull成功發(fā)明SLA打印技術(shù)(Stereo Lithography Appearance,光固化成型技術(shù)),通過激光來催化光敏樹脂成型,并制造出3D打印部件。
1986年,Chuck Hull基于SLA技術(shù),創(chuàng)立3D Systems copration。
1987年,公司推出了世界上第一臺(tái)商業(yè)3D打印系統(tǒng)。
之后二十多年,各類新的3D打印技術(shù)(FDM、SLM以及CLIP等)不斷誕生,打印的基礎(chǔ)材料也從光敏樹脂拓展到了金屬粉末、生物墨水以及混凝土等等。
早在3D打印技術(shù)還沒有爆紅的2003年,隱形矯治就已經(jīng)在運(yùn)用3D打印技術(shù)制造牙齒模型??梢哉f,隱形矯治領(lǐng)域,是最早采用3D打印技術(shù),實(shí)現(xiàn)批量化生產(chǎn)商品的民用細(xì)分領(lǐng)域之一。我們會(huì)在下文詳細(xì)展開為什么3D打印機(jī)會(huì)最早廣泛應(yīng)用于牙科領(lǐng)域。
2008年,第一次有人穿戴3D打印的假肢(比如膝蓋、腳、關(guān)節(jié)等)走上街頭。
2012年,3D Systems推出世界首款開箱即用3D打印機(jī)Cube。
Cube打印機(jī)&打印出的物體。圖片來源:Amazon
隨著2008年FDM和2013年SLA的關(guān)鍵專利到期,相關(guān)技術(shù)逐步開源,消費(fèi)級(jí)3D打印市場(chǎng)迎來諸多新玩家,3D打印第一次出圈走到了大眾面前。
在硬件方面,自2014年開始,消費(fèi)級(jí)3D打印機(jī)熱潮涌起,創(chuàng)想三維、3D Systems等公司推出更具性價(jià)比和易用性的產(chǎn)品,人們開始展望3D打印技術(shù)走入各行各業(yè)、家家戶戶的未來。
一場(chǎng)即將顛覆的制造技術(shù)革命正在醞釀之中。人工智能帶來的智能化以及硬件的不斷進(jìn)步,讓3D打印技術(shù)的爆發(fā)看起來指日可待。然后,過去近十年,3D打印仍然像一種稀有商品,僅在工業(yè)的某些特定領(lǐng)域以及海外極客的工作室中出現(xiàn)。
關(guān)于3D打印的質(zhì)量、材料、用戶體驗(yàn)以及有限的應(yīng)用場(chǎng)景等問題,一直存在爭議,但這并未阻止3D打印技術(shù)的發(fā)展。在牙科及航空航天領(lǐng)域,3D打印新技術(shù)穩(wěn)扎穩(wěn)打,為行業(yè)實(shí)實(shí)在在降低了成本,提高了效率。
我們?cè)谏衔奶岬剑?D打印有個(gè)別稱之一叫增材制造。工業(yè)制造領(lǐng)域有兩大類制造思路,一種是減材制造,另一種就是增材制造。
減材制造起源于工業(yè)革命?;疖?、輪船、電機(jī)以及汽車等傳統(tǒng)機(jī)械產(chǎn)品,都是減材制造的產(chǎn)物。減材制造通過各種方式切割、去除原始材料,制造出零部件與工具。這個(gè)過程中,材料會(huì)損耗。比如現(xiàn)代金屬制造業(yè),使用的車、銑、刨、磨、鉆等切割工藝,就是減材制造技術(shù)。而在3D打印過程中,材料不斷增加成型,正好與減材制造工藝相反,因此被稱為增材制造。
從本質(zhì)上,減材與增材最根本的區(qū)別在于,減材的材料與成型過程是解耦的,而增材的材料與成型過程是耦合的。耦合和解耦是系統(tǒng)工程中常用的概念。
耦合可以理解為各個(gè)部分之間的連接程度,在高耦合的系統(tǒng)中,各部分之間的依賴性強(qiáng)。在低耦合系統(tǒng)中,各部分之間相互獨(dú)立。解耦是指將高耦合的系統(tǒng)改成低耦合的系統(tǒng)。
用減材的思路生產(chǎn)物品時(shí),無論是使用了什么鍛造方式或者處理工藝,從最初的材料到成型的物品,都近似保持了原有的材料力學(xué)特性和強(qiáng)度。
例如制造減速箱齒輪,所用的材料是經(jīng)由齒輪鋼材鍛造而成的齒輪毛坯,然后再進(jìn)行切削處理,得到最終的成品。最終,齒輪的材料力學(xué)性質(zhì)主要由毛坯決定。
增材則是一個(gè)耦合的過程,物件最終的力學(xué)性能和微觀結(jié)構(gòu)與成型工藝息息相關(guān)。骨科植入材料是非常典型的例子。人們通過改變材料的孔隙率,調(diào)整植入材料的強(qiáng)度,從而更適配不同類型的人體組織。這是普通的金屬材料加工技術(shù)很難實(shí)現(xiàn)的。
具體而言,兩種工具制造思路各有優(yōu)劣。
減材的優(yōu)勢(shì)在于,適用于大批量生產(chǎn);成型精度更高,表面質(zhì)量更好;減材類型的打印技術(shù)已經(jīng)成熟,門檻低;利用減材技術(shù)打印的產(chǎn)品,有更好的成品力學(xué)性能。
減材的劣勢(shì)在于,很難加工結(jié)構(gòu)復(fù)雜的或者微型的零件。其次,如果使用減材技術(shù),材料利用率相對(duì)較低。比如,在航空制造領(lǐng)域,以飛機(jī)中框架為例,需要用大約3噸的毛坯材料,才能制作成150kg的成型零件。
圖片來源:NC Military Business Center
增材適用于小批量生產(chǎn);加工性強(qiáng),能制造極端復(fù)雜的幾何結(jié)構(gòu)。增材制造的利用率高,制造流程簡單。
比如,在牙齒正畸領(lǐng)域,制作牙齒模型、人工牙冠以及牙齒貼片等等,如果利用傳統(tǒng)方法,制作周期往往需要6到7天,如果采用3D打印,制作時(shí)間會(huì)縮短到數(shù)十分鐘。
但增材的劣勢(shì)也很明顯,加工出的物品力學(xué)強(qiáng)度可能有限,整體質(zhì)量可能不如使用減材技術(shù)制造的產(chǎn)品。比如,常見飛機(jī)發(fā)動(dòng)機(jī)葉片對(duì)應(yīng)的金屬材料,很難用3D打印來實(shí)現(xiàn)。發(fā)動(dòng)機(jī)在嚴(yán)酷的高溫工作環(huán)境中作業(yè),需要單晶鈦合金這類非常特殊的金屬材料進(jìn)行減材成型,才能滿足發(fā)動(dòng)機(jī)的性能要求。
理解了增材和減材背后的底層邏輯,我們就能更清楚地意識(shí)到為什么3D打印還存在一些缺陷,以及為什么現(xiàn)在3D打印能夠在部分行業(yè)應(yīng)用,而沒有被更廣泛地應(yīng)用。
了解了3D打印的發(fā)展歷史,我們?cè)賮戆涯抗饩劢沟?D打印的具體流程。
與傳統(tǒng)制造工藝相比,3D打印流程并不復(fù)雜,包含模型設(shè)計(jì)、加工規(guī)劃、打印成型以及后處理這四大步驟。借助這些步驟,3D打印把數(shù)字世界,映射到真實(shí)物理世界。
▍模型設(shè)計(jì)
在模型設(shè)計(jì)階段,3D打印主要利用創(chuàng)成式設(shè)計(jì)這種技術(shù)。
創(chuàng)成式設(shè)計(jì)以拓?fù)鋬?yōu)化技術(shù)為基礎(chǔ),在給定的設(shè)計(jì)目標(biāo)下,例如輕量化、提高散熱性能等等,直接生成滿足需求但結(jié)構(gòu)復(fù)雜的設(shè)計(jì)。這樣的復(fù)雜結(jié)構(gòu),難以用傳統(tǒng)減材制造工藝實(shí)現(xiàn),我們很難做出內(nèi)部鏤空,但強(qiáng)度保持不變的結(jié)構(gòu)。如今,這些問題都能都被3D打印解決。
市場(chǎng)中已經(jīng)有在3D打印、工業(yè)設(shè)計(jì)軟件領(lǐng)域發(fā)力的創(chuàng)業(yè)公司。比如,峰瑞已投企業(yè)優(yōu)解未來是國內(nèi)為數(shù)不多的,自主研發(fā)新一代智能設(shè)計(jì)拓?fù)鋬?yōu)化SaaS平臺(tái)的公司。
▍加工規(guī)劃
在加工規(guī)劃環(huán)節(jié),需要先把3D打印模型逐步“切片”,分解加工步驟,生成打印軌跡規(guī)劃。此外,還要給3D打印模型設(shè)計(jì)支撐結(jié)構(gòu)。打印過程中,物品需要有一定支撐,保持穩(wěn)定性。
▍打印成型
加工規(guī)劃完成后,人們需要把一系列加工代碼發(fā)給打印機(jī)。打印技術(shù)有許多種,比如選擇性激光燒結(jié)、選擇性激光熔融、光固化成型技術(shù)等等(具體詳見下圖)。
3D打印相關(guān)技術(shù)。圖片來源:億渡數(shù)據(jù)
▍后處理
打印成型并不意味著結(jié)束,還涉及非常復(fù)雜的后處理,比如去掉支撐結(jié)構(gòu)、上色、精加工、打磨等等。后處理這道工序主要是為了彌補(bǔ)3D打印本身性能的不足,提升成型物體的精度與表面質(zhì)量。
▍幾何復(fù)雜性
3D打印提升了制造的靈活度,能實(shí)現(xiàn)高度個(gè)性化定制。一些結(jié)構(gòu)復(fù)雜的設(shè)計(jì),3D打印也能夠?qū)崿F(xiàn)。
▍材料復(fù)雜性
人們可以通過3D技術(shù),打印多孔結(jié)構(gòu)或者多種材料復(fù)合的結(jié)構(gòu),讓物品實(shí)現(xiàn)強(qiáng)度、功能等不同梯度的變化。
▍層次復(fù)雜性
傳統(tǒng)加工技術(shù)難以實(shí)現(xiàn)多尺度跨越加工。而3D打印技術(shù)的跨度非常大,可以用同一種技術(shù)原理,覆蓋從微觀到宏觀的制造。在微觀制造尺度,2016年,科學(xué)家利用3D打印領(lǐng)域里的雙光子直寫技術(shù),制成了目前世界上最小的用于腸胃檢查的內(nèi)窺鏡。
圖片來源:格物者
在宏觀制造尺度,2020年,河北工業(yè)大學(xué)團(tuán)隊(duì)打印出長達(dá)28米的新版“趙州橋”。
▍功能復(fù)雜性
在工業(yè)領(lǐng)域,復(fù)雜的結(jié)構(gòu)需要將每個(gè)零件單獨(dú)加工,再裝配到一起。把復(fù)雜的零件一體化,是工業(yè)領(lǐng)域?qū)?D打印需求最大的地方。
當(dāng)前3D打印有哪些缺點(diǎn),這些缺點(diǎn)導(dǎo)致了3D打印不能在某些領(lǐng)域應(yīng)用?或者即使應(yīng)用,也要增加成本來補(bǔ)足缺陷?
第一,力學(xué)性能有限。
圖片來源:3D打印技術(shù)參考
3D打印有可能出現(xiàn)表面與材料內(nèi)部存在粉末未熔、微裂紋、孔隙等缺陷,因此零件的力學(xué)性能,例如強(qiáng)度、耐磨以及抗疲勞均不如減材制造的零件。為了保證成型物品性能,人們需要選用高價(jià)的原材料,以及更保守的工藝設(shè)計(jì),最終成本變高,耗時(shí)增多。
第二,表面精度不足。
如果我們借助減材技術(shù),比如車削、銑削、磨削等等,物體表面精度會(huì)更高。如果用3D打印,只能通過后道工藝,繼續(xù)打磨,或者進(jìn)行化學(xué)拋光。但這些后道工序會(huì)增加成本。
圖為3D打印直接成型的物品,右圖為經(jīng)過后處理的物品。圖片來源:3D打印技術(shù)參考
力學(xué)能力有限以及表面精度不足這兩大缺點(diǎn),限制了3D打印技術(shù)在其他領(lǐng)域的應(yīng)用。如果3D打印想要應(yīng)用在更多領(lǐng)域,需要改進(jìn)這些缺點(diǎn),或者提高后道工藝的效率。
目前,在醫(yī)療保健、航空航天、汽車和體育用品等領(lǐng)域,都能看到3D打印技術(shù)的身影。而航空航天和牙科領(lǐng)域,3D打印技術(shù)被應(yīng)用得尤為廣泛。這兩個(gè)都是典型的高附加值、高客單價(jià)行業(yè),3D打印技術(shù)能夠助力這兩個(gè)行業(yè)提高產(chǎn)品成型的效率。
▍航空航天
20世紀(jì)以來,幾乎最新、最好的制造技術(shù),第一時(shí)間都被用在了航空航天領(lǐng)域。比如50年前的CNC技術(shù)(Computerized Numerical Control,計(jì)算機(jī)數(shù)字化控制,利用數(shù)字化對(duì)機(jī)床運(yùn)動(dòng)及加工過程進(jìn)行控制),以及如今的3D打印技術(shù)。
為什么航空航天領(lǐng)域適合使用新技術(shù)?
航空航天是典型的高附加值、高客單價(jià)、小批量、高迭代、多SKU的行業(yè),一個(gè)零件的造價(jià)可能高達(dá)數(shù)十萬甚至數(shù)百萬。航空航天在輕量化、復(fù)雜結(jié)構(gòu)的一次成型、節(jié)省材料以及靈活驗(yàn)證迭代等方面的制造需求,跟3D打印的屬性非常契合。
“錘子”和“釘子”匹配得恰到好處,航空航天可以說是3D打印在工業(yè)界應(yīng)用最多的細(xì)分領(lǐng)域。比如,通用航空于2019年研發(fā)出了世界上第一臺(tái)采用3D打印組件的渦輪螺旋槳發(fā)動(dòng)機(jī)。
發(fā)動(dòng)機(jī)里的中框組件,原本由300多個(gè)單獨(dú)的零件組裝而成。通用航空通過結(jié)構(gòu)優(yōu)化,將中框組件變成了單一的零件結(jié)構(gòu),借助3D打印實(shí)現(xiàn)一體成型。3D工藝讓中框組件輕量化的同時(shí),也降低了制造成本。
渦輪螺旋槳發(fā)動(dòng)機(jī)的中框組件由過去的300個(gè)零件優(yōu)化為一個(gè)。圖片來源:3Dprint.com
此外,美國國家航空航天局(NASA)通過3D打印技術(shù),制造出了火箭發(fā)動(dòng)機(jī)噴嘴,并于2014年成功點(diǎn)火試飛。
NASA的工程師稱,“如果用傳統(tǒng)制造方法,要造163個(gè)單獨(dú)零件然后再組裝起來,但3D打印只需2個(gè)零件,不僅節(jié)約了時(shí)間金錢,而且造出的部件能提高火箭發(fā)動(dòng)機(jī)性能,減少失敗可能性?!?br />
▍牙科
除了航空航天,3D打印也在牙科領(lǐng)域被廣泛應(yīng)用。
牙科領(lǐng)域的需求特別個(gè)性化,尤其是正畸過程中,每個(gè)階段牙齒都會(huì)有變化,需要定制化、分階段的技術(shù)方案。如今在牙齒正畸領(lǐng)域,鋼絲牙套逐漸退出大眾視野,隱形牙套取而代之。
隱形牙套技術(shù)是典型的交叉學(xué)科技術(shù),涉及口腔醫(yī)學(xué)、計(jì)算機(jī)科學(xué)、生物力學(xué)、3D打印以及材料學(xué)等多學(xué)科的知識(shí)。制作隱形牙套時(shí),很多環(huán)節(jié)需要3D打印技術(shù)。比如牙醫(yī)設(shè)計(jì)矯正方案,要用到3D動(dòng)態(tài)設(shè)計(jì)軟件。制作牙模,也要用到3D打印機(jī)。
傳統(tǒng)制作正畸牙模需要多次取模、制作、調(diào)整,而且會(huì)有一定的精度誤差。而3D打印技術(shù)通過數(shù)字建模,減小模型誤差,能夠提制作出精密度更高的牙齒模型。
我們?cè)谏衔奶岬剑?D打印出的物品力學(xué)性能有限,為什么這項(xiàng)技術(shù)還能在牙科以及航空航天領(lǐng)域廣泛應(yīng)用?
3D打印的牙齒模型并不會(huì)直接作用于患者,只是為了制作牙齒模型,幫助牙科醫(yī)生制作矯正器。大多數(shù)矯治器是用高分子材料,壓在牙齒模型上倒模出來的,3D打印只是解決了過渡期間的需求。不過目前也有少數(shù)機(jī)構(gòu),通過更精細(xì)的3D打印技術(shù),制作矯正器。
航空航天領(lǐng)域也是如此,人們一般不會(huì)將3D打印材料用在精度要求極其高的器件上。很多火箭也都是一次性的。
除了航空航天以及牙科領(lǐng)域,未來3D打印也有望被更廣泛地應(yīng)用于生物3D打印。生物3D打印是指用含有活細(xì)胞的混合物作為基礎(chǔ)材料,打印出活體組織器官。
3D打印在生物領(lǐng)域的應(yīng)用大多處于探索階段。根據(jù)賀永等浙大學(xué)者的梳理總結(jié),生物3D打印大致可劃分為4個(gè)層次:
第一層次為制造無生物相容性要求的結(jié)構(gòu),比如目前廣泛應(yīng)用于手術(shù)路徑規(guī)劃的3D打印等;
第二層次為制造有生物相容性要求、不可降解的制品,比如鈦合金關(guān)節(jié)、缺損修復(fù)的硅膠假體等;
第三層次為制造有生物相容性要求,可降解的制品,比如活性陶瓷骨、可降解的血管支架等;
第四層次就是狹義生物3D打印,即操縱活細(xì)胞構(gòu)建仿生三維組織,比如打印藥物篩選及機(jī)理研究用的細(xì)胞模型、肝單元、皮膚、血管等。
目前在生物領(lǐng)域,類器官被稱為模擬體內(nèi)微環(huán)境最好的技術(shù)之一。類器官是在特定培養(yǎng)條件下,使用原代組織、胚胎干細(xì)胞或誘導(dǎo)的多能干細(xì)胞在體外生成的一種微器官。
人們已經(jīng)制造出肝臟、胰臟、胃、心臟、腎臟甚至乳腺等在內(nèi)的各種類器官。類器官被應(yīng)用于癌癥研究、藥物篩選和精準(zhǔn)醫(yī)學(xué)領(lǐng)域。但它僅僅在一小塊定向培養(yǎng)的微小組織內(nèi)模擬體內(nèi)微環(huán)境,距離更大尺度的模擬依舊存在距離。
如果我們能直接用3D打印技術(shù),打印出心臟或者肝臟,同樣可以用來測(cè)試藥物,輔助藥物研發(fā)。2016年,生物3D打印企業(yè)Organovo與羅氏制藥公司合作開展了一項(xiàng)藥物測(cè)試,測(cè)試結(jié)果表明,3D打印的肝臟組織可以被用于區(qū)分多種藥物的毒性水平。
相比于形態(tài)微小的類器官,這些仿生器官從更大尺度上,復(fù)刻了生物組織,提供了更豐富的體內(nèi)環(huán)境模擬反饋。
實(shí)驗(yàn)室通過改進(jìn)后的六軸機(jī)器人,打印血管及心肌組織。圖片來源:《Bioactive Materials》
《Bioactive Materials》發(fā)布的研究顯示,2022年,有實(shí)驗(yàn)室將六軸機(jī)器人改造成為生物3D打印機(jī),打印出了心肌組織。這個(gè)心肌組織還分布著毛細(xì)血管,并在體外維持了六個(gè)月的搏動(dòng)。
既然2022年,已經(jīng)有實(shí)驗(yàn)室能做到這樣的打印能力,或許未來,3D打印的生物器官可以被更廣泛地用于藥物測(cè)試。
當(dāng)然,不止是藥物研發(fā),3D打印可能會(huì)助益整個(gè)生物領(lǐng)域,反哺生物技術(shù)研發(fā)。
2019年,《微型機(jī)器》發(fā)表研究稱,學(xué)者通過改進(jìn)生物3D技術(shù),打印出感覺神經(jīng)元。感覺神經(jīng)元是外周神經(jīng)系統(tǒng)的一個(gè)重要組成部分。未來,當(dāng)更多類型神經(jīng)元細(xì)胞被成功打印之后,學(xué)者就能更直觀地觀察腦科學(xué)技術(shù)的效果,從而研發(fā)出更精準(zhǔn)的腦科學(xué)治療技術(shù)。
直到今天,3D打印的應(yīng)用領(lǐng)域還不夠廣泛。
因?yàn)?D技術(shù)很難實(shí)現(xiàn)規(guī)?;a(chǎn),人們大多用3D打印技術(shù)來實(shí)驗(yàn)產(chǎn)品設(shè)計(jì)或者生產(chǎn)小批量的產(chǎn)品。在線制造平臺(tái)HUBS2022年發(fā)布報(bào)告,調(diào)查了人們?nèi)绾螒?yīng)用3D打印技術(shù)。其中62%的受訪對(duì)象選擇用3D打印技術(shù)來打樣,17%用來制造單批次的零件,11%用來生產(chǎn)多批量的零件,8%用來生產(chǎn)工業(yè)制造所用的固定裝置,2%用來做美學(xué)設(shè)計(jì),比如打印鞋子。
圖片來源:在線制造平臺(tái)HUBS
在成本方面,3D打印與傳統(tǒng)金屬加工工藝差別很大。傳統(tǒng)工藝擁有規(guī)模效應(yīng),當(dāng)加工量達(dá)到一定量級(jí),邊際成本將非常低。而3D打印成本下降的速度,遠(yuǎn)遠(yuǎn)慢于傳統(tǒng)工藝邊際成本的下降速度。
圖片中有兩條線,橙色的線表示傳統(tǒng)的制造成本,藍(lán)色的線表示3D打印的制造成本。
兩條線的交點(diǎn)就是break-even point(收支平衡點(diǎn))。如果產(chǎn)品制造數(shù)量在這個(gè)點(diǎn)左側(cè),3D打印更具優(yōu)勢(shì)。如果產(chǎn)品數(shù)量在右側(cè),那么傳統(tǒng)加工方式更具優(yōu)勢(shì)。
這也解釋了,為什么在航空航天域以及牙科之外,3D打印沒有被大規(guī)模廣泛應(yīng)用。幾乎大部分行業(yè)都存在break-even point,有的行業(yè)已經(jīng)在嘗試采用3D打印技術(shù),但還沒有廣泛使用。
在手機(jī)制造領(lǐng)域,2013年,摩托羅拉宣布與3D Systems將使用3D技術(shù)打造智能手機(jī)的零組件。在服裝制造行業(yè),2020年,麻省理工學(xué)院(MIT)的研究人員開發(fā)出一種新的3D打印方法,能夠降低打印紡織品的成本。
未來,3D打印是否會(huì)有技術(shù)上的進(jìn)展,讓整個(gè)成本降低,使得break-even point往右移,也就是圖中畫綠色的線,那3D打印就有可能在一些新的領(lǐng)域進(jìn)一步拓寬應(yīng)用。
我們觀察到,混合加工有可能是讓3D打印技術(shù)提高精度、降低成本的路線之一。
▍混合加工
混合加工是指在一臺(tái)設(shè)備上完成兩種不同機(jī)理的加工過程,如3D打印和切削加工混合,電加工和超聲波加工混合等。減材加工的好處在于成型的物品表面質(zhì)量高,增材加工的優(yōu)勢(shì)在于靈活性與復(fù)雜成型能力,而混合加工則兼具兩類工藝的特性。
2020年10月, 美商務(wù)部將六項(xiàng)新興技術(shù)添加到《出口管理?xiàng)l例》的商務(wù)部管制清單中,其中包括混合增材制造、光刻軟件和5nm生產(chǎn)技術(shù)?;旌显霾闹圃焐婕坝布圃煸O(shè)備與計(jì)算機(jī)數(shù)控軟件。
美國把混合增材制造技術(shù)與半導(dǎo)體技術(shù)放在一起,足以證明這些技術(shù)的重要性。
圖片來源:美國商務(wù)部
如果想要實(shí)現(xiàn)混合加工,需要在硬件以及軟件上同時(shí)發(fā)力。目前已有的混合加工技術(shù)包括CNC+3D打印的混合加工,以及激光拋光+3D打印混合加工。
香港科技大學(xué)的3D打印實(shí)驗(yàn)室是國內(nèi)3D打印領(lǐng)域頂尖的實(shí)驗(yàn)室之一。目前該實(shí)驗(yàn)室采用CNC與3D打印混合的技術(shù),制造出激光增減材混合加工軟硬件平臺(tái),能夠?qū)崿F(xiàn)增材、減材工藝的交替。
實(shí)驗(yàn)室把金屬打印頭集成在雙主軸五軸加工中心上。之前3D打印主要利用x、y、z三個(gè)軸,五軸聯(lián)動(dòng)之后,打印的自由度更高,可以實(shí)現(xiàn)更復(fù)雜的幾何形狀打印與先進(jìn)的無支撐打印。
打印機(jī)器將打印和切割的過程反復(fù)交替,最終使得物體表面有了光滑的鏡面效果。我們很難通過傳統(tǒng)的3D打印技術(shù),實(shí)現(xiàn)鏡面的效果。
全球頭部機(jī)床制造商德馬吉(DMG)也采取了類似的策略。德瑪吉具備了混合加工的硬件能力,不過還沒有成熟的工藝軟件相適配。目前德瑪吉還只能實(shí)現(xiàn)CNC與3D打印獨(dú)立加工的形態(tài),和理想的混合加工還存在一定距離。
行業(yè)里比較關(guān)注的是,這種新的融合技術(shù),是否能夠替代原來獨(dú)立的3D打印與CNC減材制造,成為一種全新的加工方式?
醫(yī)療器械領(lǐng)域,比較典型的3D打印應(yīng)用是內(nèi)流道結(jié)構(gòu),比如手術(shù)的導(dǎo)管。
當(dāng)手術(shù)的導(dǎo)管達(dá)到微米級(jí)、毫米級(jí)別的尺度時(shí),很難用傳統(tǒng)的加工方式來實(shí)現(xiàn)。如果只用3D打印技術(shù),制成的導(dǎo)管表面很粗糙,只能繼續(xù)用化學(xué)拋光來做后處理,提高了成本。
但如果用混合打印,既能保證內(nèi)流道表面光滑,又能降低成本。
目前,工業(yè)界比較看好混合加工的發(fā)展?jié)摿?。因?yàn)榛旌霞庸ぐ押芏喙に嚰傻揭慌_(tái)機(jī)器上,又能實(shí)現(xiàn)增材技術(shù)的加工效果,也能實(shí)現(xiàn)減材技術(shù)的靈活性,成本也低。
3D打印本質(zhì)上相當(dāng)于是數(shù)字化的抽象模型,映射到了真實(shí)世界。未來,3D打印將是AI下游執(zhí)行層中,鏈接虛擬與現(xiàn)實(shí)的重要組成。
GPT大模型如果想要和真實(shí)的物理世界發(fā)生碰撞,需要3D打印這雙手。
在3D打印的應(yīng)用領(lǐng)域,航空航天行業(yè)和牙科行業(yè)跑在最前面。因?yàn)閮蓚€(gè)行業(yè)均落在成本break-even point的左側(cè),行業(yè)的需求與3D打印的特性完美契合。3D打印能夠幫助細(xì)分行業(yè)實(shí)現(xiàn)制造全流程的成本優(yōu)勢(shì)。
3D打印的未來增量來自于底層技術(shù)革新,從而帶動(dòng)更多新的應(yīng)用場(chǎng)景與成本break-even point右移。
我們?cè)诒酒獔?bào)告中,沒有列舉太多細(xì)分領(lǐng)域的迭代技術(shù),原因在于這些技術(shù)還沒有從本質(zhì)上改變所處行業(yè)的制造成本結(jié)構(gòu)。我們希望新的技術(shù)能夠拓展新的場(chǎng)景,或者在原有的場(chǎng)景上,帶來更多規(guī)?;隽?。
我們重點(diǎn)關(guān)注增減材混合加工與生物3D打印這類新的范式變化方向。前者是在傳統(tǒng)制造領(lǐng)域,為3D打印打入更多民用場(chǎng)景,比如汽車、椅子。后者是作為生物與制造技術(shù)的交叉,助力生物領(lǐng)域的藥物測(cè)試研發(fā),反哺生物科技研究。
來源:峰瑞資本
|
你可能喜歡
第二人生獲千萬級(jí)Pre-A輪融資,專注于3D打
直播預(yù)告 | 3D Systems揭秘:如何用金屬增
圓滿落幕!第二屆國際定向能量沉積增材制造
終于定檔了!第七屆IAME大會(huì)將于12月27-29
推薦課程
神奇的3D打印
SLA3D打印工藝全套培訓(xùn)課程 - 軟件篇
3D打印月球燈視頻教程 包括完整貼圖建模流
【原創(chuàng)發(fā)布】Cura軟件修改二次開發(fā)定制視頻